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(*) : prerequisites

The goal here is to present (only) GflowNets, but I think it is necessary to
understand also (*) : I usually call GflowNets “parameterized MCMC”, let
try to see why.
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Notations

RV, r.v. : Random variable (X , U)

pdf : probability density function (f , g , π)

cdf : cumulative distribution function (F , G )

RNG : Random Number Genarator

MCMC : Markov Chain Monte Carlo

MH : Metropolis-Hasting

GFlowNets : Generative Flow Networks
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I - Problem to solve: Sampling from a probability
distribution

Let π a probability distribution defined on a space X (let’s ignore the notion of
probability space for the moment).

We would like to have an algorithm that generates elements from X such
that the probability of an x ∈ X being generated is equal to π(x)

In other words, if the algorithm generates a list of N elements, we would like
to have a number Nπ(x) of each x ∈ X in the list, ie a proportion π(x) of
each x in the list

This is called sampling from a probability distribution and it is different from
solving directly (exploration vs exploitation) argmaxx∈X π(x)

The high probability states will therefore be more generated than low
probability states.

In some cases, π is not explicitly known, but R : X 7→ R+ such that

π(x) ∝ R(x) ∀x ∈ X
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I - Problem to solve : Example
Generate (randomly) positive multiples x1, . . . , xm of a positive integer n, with
each xi being of length less than or equal to ℓ > 2.

Attempt 1

State space
X = {nk , k ∈ N, nk ≤ 10ℓ − 1}

Reward function (Uniform over X )

R = 1X

Canonical partition function

Z =
∑
x∈X

R(x) = |X |

Probability distribution (Uniform over X )

π(x) =
R(x)

Z
=

1

|X |
1X (x)
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I - Problem to solve: Example
Generate (randomly) positive multiples x1, . . . , xm of a positive integer n, with
each xi being of length less than or equal to ℓ > 2.

Attempt 2

State space
X = {0, ...., 10ℓ − 1}

Reward function

R(x) = λ−β×min{x−nqn(x), n(qn(x)+1)−x} ∈ [0, 1]

where λ > 1, β > 0 and qn(x) =
⌊
x
n

⌋
(quotient of euclidian division of x by

n)

Intuition behind this reward function (TODO : figure instead) :
▶ The closer we are to a multiple of n, the greater the reward
▶ For all x , nqn(x) ≤ x < n(qn(x) + 1) : x is always between two multiples of n
▶ Among these two multiples, we choose the closest one to x , then we compute

the distance d = min{x − nqn(x), n(qn(x) + 1)− x}.
▶ To transform the distance into a reward, we just do λ−β×d , λ > 1 and β > 0.
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I - Problem to solve: Example
Generate (randomly) positive multiples x1, . . . , xm of a positive integer n, with
each xi being of length less than or equal to ℓ > 2.

Attempt 2

State space
X = {0, ...., 10ℓ − 1}

Reward function (n = 5, λ = 2 and β = 1) :

R(x) =

 1 if x = 5k
2−1 if x = 5k + 1 or x = 5k + 4 = 5(k + 1)− 1
2−2 if x = 5k + 2 or x = 5k + 3 = 5(k + 1)− 2

(k ∈ N)

Figure: Reward distribution
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I - Example : Generate (randomly) multiples of n

Reward function (n = 5, λ = 2 and β = 1) :

R(x) =

 1 if x = 5k
2−1 if x = 5k + 1 or x = 5k + 4 = 5(k + 1)− 1
2−2 if x = 5k + 2 or x = 5k + 3 = 5(k + 1)− 2

(k ∈ N)

Canonical partition function

Z =
∑
x∈X

R(x) =
10ℓ−1∑
x=0

R(x)

Probability distribution

π(x) =
R(x)

Z
=

 1/Z if x = 5k
1/2Z if x = 5k + 1 or x = 5k + 4
1/4Z if x = 5k + 2 or x = 5k + 3

(k ∈ N)
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I - Problem to solve : Why is this important?

Machine Learning (Ubiquitous ...)

Stochastic GD

Weight initialization, Random kitchen sinks

Bayesian inference, Variational Inference

...

Statistical physics (Ising model, ...)

R(x) = e
− E(x)

kBT

E (x) is the energy (Hamiltonian) of the microstate x (of the physical system)

T the temperature

kB the Boltzmann constant

π(x) = R(x)
Z the Boltzmann factor at x (probability for the system to be

present in the microstate x)
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II - Inverse Transform Sampling

Proposition (How it works?)

cdf : F : R → [0, 1]

Uniform RNG : U ∼ U([0, 1])
The random variable X = F−1(U) is distributed as F

P [X ≤ x ] = P
[
F−1(U) ≤ x

]
= P [U ≤ F (x)] = F (x) since F (x) ∈ [0, 1]

Example : Exponential distribution

F (x) = 1− e−λx =⇒ F−1(U) = − ln(1− U)

λ

Advantages & Limits

Advantages : cheaper (when F−1 is available)

Limits : quantile function F−1

In some cases (normal distribution ...), we don’t even have a formula for F
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II - Inverse Transform Sampling

Alternatives

Find an estimate of F−1

Normal distribution : when x is large, F (x) behaves like F̃ (x) = 1− e−x2/2

whose density is f̃ (x) = xe−x2/2 and the inverse is F̃−1(u) =
√
ln(1− u).

Rayleigh’s distribution

Root search inversion for continuous distributions
Sometimes we have or can approximate F better than F−1 : for a given U,
look for X such that F (X )− U = 0.
Binary search, Newton-Raphson, regula falsi, secant method, Brent-Dekker ...

Inversion for discrete distribution
p(xi ) = P[X = xi ] for i = 0, . . . , k − 1 and F (x) =

∑
xi≤x p(xi )

Generate U, find I = min{i | F (xi ) ≥ U} and return xI .
Sequential search, binary search, Index search, ...

Acceptance-Rejection Method
▶ Most important technique after inversion
▶ Can provide an effective solution when inversion is too difficult or costly
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III - Acceptance-Rejection Method

Proposition

We want to generate a point uniformly in a set A ⊂ Rd

We choose a “simpler” set B such that A ⊂ B
We generate independent points in B, and retain the first one that falls in A
The retained point follows the uniform distribution in A

For D ⊂ A, P [X ∈ D|X ∈ A] =
P [X ∈ D ∩A]

P [X ∈ A]
=

vol(D)/vol(B)
vol(A)/vol(B)

=
vol(D)

vol(A)

Thus the distribution of X conditional on X ∈ A is uniform in A

Pascala Jr TIKENGb N. (Mila, DIRO, UdeM) August 15, 2023 11 / 50



III - Acceptance-Rejection Method

We want to generate X according to a density f : R → R+

The surface under f is:

S(f ) =
{
(x , y) ∈ R2 : 0 ≤ y ≤ f (x)

}
Proposition : If (X,Y) is uniform on S(f ), then X has the density f

(X,Y) ∼ U (S(f ))

=⇒ P[X ≤ x ] = Area ({(x , y) ∈ S(f ) : z ≤ x}) =
∫ x

−∞
f (z)dz = F (x)

Idea: Choose a simple surface B which contains S(f ), then generate (X ,Y )
uniformly in B. If (X ,Y ) ∈ S(f ), it is OK, otherwise we start again.
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III - Acceptance-Rejection Method

X ∼ Beta(3, 2)

cdf f (x) = 12x2(1− x) · 1[0,1](x)

argmaxx∈[0,1] f (x) = 2/3

a = f (2/3) = 16/9

B = {(x , y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 16/9}

To generate (X ,Y ) in B, we generate two independent uniforms U and V ,
and return (X ,Y ) = (U, aV )
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III - Acceptance-Rejection Method

To generate (X ,Y ) in B, we generate two independent uniforms U and V :
(X ,Y ) = (U, aV )

The probability that the point is in S(f ) is
∫ 1
0
f (x)dx

a = 1/a = 9/16

The expected number of points (X ,Y ) to be generated is a = 16/9
This is because the number of iterations needed to successfully generate a
candidate follows a geometric distribution with success probability 1/a.
=⇒ we can tune a : we want vol(B) as small as possible
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III - Acceptance-Rejection Method

To generate X according to density f , we choose another density g and a
constant a ≥ 1 such that

f (x) ≤ h(x) = ag(x),∀x

and such that it is easy to generate X according to g

We apply the rejection method with A = S(f ) and B the surface under h

B = S(h) =
{
(x , y) ∈ R2 : 0 ≤ y ≤ h(x)

}
Algorithm 1: Acceptance-Rejection Method

1 repeat
2 Generate X according to g and U ∼ U([0, 1]), independently
3 until U · h(X ) ≤ f (X )
4 Return X
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III - Acceptance-Rejection Method

Algorithm 2: Acceptance-Rejection Method

1 repeat
2 Generate X according to g and U ∼ U([0, 1]), independently
3 until U · h(X ) ≤ f (X )
4 Return X

At each loop turn, the probability of accepting X is 1/a

The number of loop turns before acceptance is a geometric r.v. of parameter
p = 1/a.

The average number of loop turns per r.v. is 1/p = a.

Therefore, we want a ≥ 1 as small as possible.

Tradeoff between decreasing a and keeping g simple
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Example

X ∼ Beta(3, 2)

To reduce a, we can take the hat function

h(x) =

 f (x1) if x < x1
16/9 if x1 ≤ x ≤ x2
f (x2) if x2 < x

(0 < x1 < 2/3 < x2 < 1)

The area under h is minimized by taking x1 = 0.281023 and x2 = 0.89538. It
is then reduced from 1.77778 to 1.38997.

The inverse cdf G−1 of g is piecewise linear.

Why not take a piecewise linear function h instead of a piecewise constant?
Computing G−1 would require square roots (...) : we would lose efficiency.
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III - Acceptance-Rejection Method

Limits

In many problems, Z , the denominator of π is (too) hard to compute. .

Bayesian inference : π(θ|x) = π(θ)p(x|θ)
p(x)

▶ π(θ)p(x |θ) is easy to compute
▶ but p(x) =

∫
π(θ)p(x |θ)dθ can be very difficult or impossible to compute

▶ So we need to be able to sample from the posterior π(θ|x) just by knowing
π(θ)p(x |θ), ie the prior π(θ) and the likelihood p(x |θ).

Statistical physics (e.g. Ising model)

▶ We only know R(x) = e
− E(x)

kBT , but Z ∝
∫
X R(x)dx is often difficult to compute

Alternatives

MCMC, Variational Inference (Bayes), GflowNets, etc
It may also be tempting to see R as a function to be optimized and try directly
the gradient-based approaches, but note that R is derivative-free : evaluations do
not give gradient information.
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IV - MCMC

MCMC methods try to find a (reversible) Markov chain of transition matrix
P such that π is its stationary distribution

πP = π, π(x) =
R(x)

Z
∀x

MCMC trick: the constraint remains valid if we multiply the two sides by a
constant

πP = π ⇐⇒ ZπP = Zπ ⇐⇒ RP = R

If such a Markov chain is found, it will be enough to simulate it up to some
step n → ∞ :

▶ simulate a random walk of infinite length on the chain, πn+1 = πnP with
n → ∞ and take the last elements obtained

▶ the first steps is generaly call the burn-in phase

Given the difficulty of finding π in practice, MCMC methods find alternatives
to simulate a random walk without explicitly having π, but just R.
Metropolis-Hasting, Gibbs sampling, Metropolis-adjusted Langevin, ...
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IV - MCMC : Metropolis-Hasting

We want to sample from a distribution π(x) = R(x)/Z , R(x) > 0 and Z
unknow

We define a Markov transition matrix Q on X : 0 ≤ Q ≤ 1 and∑
x′∈X Q(x ′|x) = 1 ∀x ∈ X

Let x0 ∈ X the initial state

We then perform the following two steps repeatedly:
▶

x = xt , generate x ′ ∼ Q(.|x)
▶

xt+1 =

 x ′ with probability α(x ′|x) = min

{
R(x′)·Q(x|x′)
R(x)·Q(x′|x) , 1

}
x otherwise.

Note that α depends only on R, not π.
So we don’t need π in the algorithm, only R = πZ .

Markov transition matrix (it works?) :

P(x ′|x) = α(x ′|x)Q(x ′|x)
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IV - MCMC : Metropolis-Hasting

Detailed balance equation :

∀ (x , x ′) ∈ X 2, π(x)P(x ′|x) = π(x) min

{
Zπ(x ′) . Q(x |x ′)
Zπ(x) . Q(x ′|x)

, 1

}
Q(x ′|x)

= min

{
π(x ′)Q(x |x ′), π(x)Q(x ′|x)

}
= π(x ′) min

{
1,

Zπ(x) . Q(x ′|x)
Zπ(x ′) . Q(x |x ′)

}
Q(x |x ′)

= π(x ′)α(x |x ′)Q(x |x ′)
= π(x ′)P(x |x ′)

So the markov chain of transition matrix P is reversible with stationary
distribution π :

πP = π

∀ x ∈ X ,
∑
x′

π(x ′)P(x |x ′) =
∑
x′

π(x)P(x ′|x) = π(x)
∑
x′

P(x ′|x) = π(x)
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IV - MCMC : Metropolis-Hasting

Markov transition matrix (it works? Yes) :

P(x ′|x) = α(x ′|x)Q(x ′|x)

Detailed balance equation :

∀ (x , x ′) ∈ X 2, π(x)P(x ′|x) = π(x ′)P(x |x ′)

So the markov chain of transition matrix P is reversible with stationary
distribution π :

πP = π

This condition, although sufficient, is not necessary for π to be a stationary
distribution

It is also necessary for the Markov Chain to be ergotic (i.e. that there exists
n such that Pn > 0) to guarantee that π is stationary: in this case, π is the
unique stationary distribution of the Markov Chain
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IV - MCMC : Metropolis-Hasting

Example : generating multiples of n = 27

We can consider an isotropic Gaussian distribution as the proposal
distribution :

Q(.|x) ∼ N (x , σ2)

The algorithm will be very sensitive to the value of σ2 chosen.

If σ2 is too small, the algorithm may turn indefinitely around its starting
point (because of the desert that exists between the modes of R).

We can also choose a uniform proposal distribution :

Q(x ′|x) = 1

|X |
∀ (x , x ′) ∈ X 2

Figure: Reward distribution n = 27
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IV - MCMC

Limits
Generally too expensive

Generally do only local exploration
If π has several modes separated by deserts of probabilities, these algorithms
can get stuck in the same regions during the random walk

The space X on which the reward function is defined is very complex in many
problems : set of molecules, the set of sentences, set of images, etc

▶ Sampling requires very complex algorithms or models to build objects to be
evaluated

▶ An algorithm that tries to successively build the objects and test them (like
MCMC methods) would be very expensive

Alternatives

Variational Inference (Bayes), GflowNets, etc
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V - GFlowNets

Definition
GFlowNets are generative models that learn a stochastic policy that iteratively
constructs the sampled object through a sequence of simpler steps, such that the
probability of generating an object is proportional to its reward
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V - GFlowNets : Interesting when the problem have some
properties

Objects can be constructed sequentially

A molecule for example can be built by combining several atoms, a sentence can
be constructed by adding each time a word after the sentence already constructed.
A binary image can be generated by choosing at each step a pixel position, and
then choosing the color (0 or 1) to assign to it
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V - GFlowNets : Interesting when the problem have some
properties

The same object can be built (and destroyed) in several different ways

We are dealing with a DAG (Directed Acyclic Graph)
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V - GFlowNets : Interesting when the problem some
properties

The same object can be built (and destroyed) in several different ways

We are dealing with a DAG (Directed Acyclic Graph)

The DAG can in many cases be reduced to a simple tree

For example, considering that the final sentence [BOS] a b c [EOS] has
been constructed in an autoregressive way

[BOS] : Beginning Of Sentence

[EOS] : End Of Sentence

It is obvious that the sentence that led to this state is [BOS] a b c

And the one that led to [BOS] a b c is [BOS] a b

...

... [BOS] a

... [BOS] (initial state)
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V - GFlowNets: Interesting when the problem have some
properties

The reward function has several modes (local maximums)

Example: multiples of a number n of length less than or equal to ℓ > 2

I assume here that the numbers are constructed autoregressively starting
from an initial state (like [BOS]) and adding each time a digit between 0 and
9 at the end of the already constructed number

The process continues until a special symbol is generated (like [EOS]) or
until the number is of length ℓ

If we have instead a neural network that directly returns a number (like the
generator of a GAN), then we cannot speak of a notion of flow

Figure: R(x) = λ−β×min{x−n∗qn(x), n∗(qn(x)+1)−x}
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The oracle (the real reward function in other words) is difficult to call

In the case of the multiples of n above, the analytical form of the reward
function is known. Moreover, with a little mathematics one can find all x
such that R(x) = r , r ∈ R+

But let’s imagine the case where we have to find a molecule that kills the
given virus, and that has other properties like its time of action (if the
molecule kills the virus very slowly a sick person can take the drug, but die
before it does its effects), that has few side effects, that is easy to
manufacture... All these properties can be translated into a reward function,
except that here, being given a new molecule, the specialists have to go to
the laboratory, do clinical trials (which take days or weeks, which are
financially expensive ...).

An alternative in this case (and that GFlowNets knows very well how to
exploit), is to train on the molecules already available (but which are not as
satisfactory as we wish), a model able to estimate the reward of new
molecules. In the case of covid-19, a dataset can be made of : Moderna,
Pfizer-BioNTech, AstraZeneca, Janssen (Johnson & Johnson) ...

This reward function (less expensive), can be used to evaluate molecules very
quickly.
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V - GFlowNets : Interesting when the problem have some
properties

Reinforcement Learning?

Note that Reinforcement Learning algorithms can also be used to solve this type
of problems, but the maximization of expected return in this algorithms is
generally achieved by putting all the probability mass of the state-action policy on
the highest-return sequence of actions. GflowNets solves the problem by turning
R into a generative policy which samples with a probability proportional to R.
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V - GFlowNets : DAG

Directed graph

Tuple (S,A)

S : set of states

A ⊂ S × S : directed edges

Elements of A are denoted s→s ′ and called edges or transitions.

For each element of s ∈ S, we define two sets :

the set of its parents : Par(s) = {s ′ | s ′→s ∈ A}
and the set of its children : Child(s) = {s ′ | s→s ′ ∈ A}

Trajectory

Sequence τ = (s1, . . . , sn) of elements of S such that every transition
st→st+1 ∈ A :

s ∈ τ means that s is in the trajectory τ , i.e., ∃ t ∈ {1, . . . , n} / st = s

s→s ′ ∈ τ means that ∃t ∈ {1, . . . , n} / st = s, st+1 = s ′
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Directed Acyclic Graph : DAG

Directed graph in which there is no trajectory τ = (s1, . . . , sn) satisfying sn = s1,
besides trajectories composed of one state only.

Source & Sink
For DAGs considered here, we have two special states :

the source/initial state s0, Par(s0) = ∅
the sink/final state sf , Child(sf ) = ∅

Depending on the problem we can have many of these states. In this case, a
special initial (resp. final) state can be created which is connected to all initial
states (resp. to which all final states are connected)

Complete trajectory

Trajectory that starts at s0 and ends at sf . Hereafter, the complete
trajectories τ = (s0, s1, . . . , sn, sf ) will be noted simply τ = (s0, s1, . . . , sn)

Set of complete trajectories : T = {(s0, . . . , sn) | sn ∈ X}
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Problem to solve
Let X be the set of final states, and let define on X a positive function R
How to define on (S,A) a generative model for which the probability π(x) of

generating an element x ∈ X is proportional to R(x), ie π(x) = R(x)∑
x∈X R(x) ?

Solution
GflowNets define a function F : T 7→ R+, called flow :

which must respect the reward matching condition :

R(x) =
∑

τ=(s0,...,sn)|sn=x

F (τ)

which must be Markovian, i.e. there must exist distributions PF (.|s) over the
children Child(s) of every non-terminal state s, and a constant Z , such that
for any complete trajectory τ = (s0, . . . , sn) we have

P(τ) = PF (τ) = PF (sn|sn−1)PF (sn−1|sn−2) . . .PF (s1|s0) =
F (τ)

Z
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Total flow : partition function

Z =
∑
τ∈T

F (τ)

As in statistical physics, Z captures how the rewards/probabilities are distributed
among different individual final states / complete trajectories.

Forward policy

PF (st+1|st) is called a forward policy : by using it to construct a trajectory
τ = (s0, . . . , sn), the probability that sn = x ∈ X is proportional to R(x). Why?

Backward policy : Backwards transition probability PB

There must exist distributions PB(.|s) over the parent Par(s) of every non-initial
state s such that for any terminal state x we have :

P(τ = (s0, . . . , sn) | sn = x) = PB(s0|s1) . . .PB(sn−2|sn−1)PB(sn−1|sn = x)

Given x ∈ X , PB can be used to sample a trajectory leading from s0 to x .
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State flow and edge flow

The flow through a state is the sum of the flows of the complete trajectories
passing through that state

F (s) =
∑
τ∈T

1s∈τF (τ)

The flow F (s→s ′) through an edge s→s ′ is called an edge flow

F (s→s ′) =
∑
τ∈T

1s→s′∈τF (τ)
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F (s0) = F (sf ) =
∑

τ∈T F (τ) = Z since ∀τ ∈ T , s0 ∈ τ and sf ∈ τ

In-flow for non-initial states :

Fin(s) =
∑

s′′∈Par(s)

F (s ′′→s)

Out-flow for non-terminal states :

Fout(s) =
∑

s′∈Child(s)

F (s→s ′)

We can also show that

PF (s
′|s) = F (s→s ′)

F (s)
and PB(s|s ′) =

F (s→s ′)

F (s ′)
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Problem to solve
Let X be the set of final states, and let define on X a positive function R.
How to define on (S,A) a generative model for which the probability π(x) of

generating an element x ∈ X is proportional to R(x), ie π(x) = R(x)∑
x∈X R(x) ?

Solution

Using PB , generate complete trajectories τ = (s0, . . . , sn = x) such that

Fout(s0) = Z (redundancy : the other two conditions imply this one)

F (st) = Fin(st) = Fout(st) ∀ t ∈ 1, ..., n

Fout(sn) = Fout(x) = R(x)

If this objective is satisfied, we will have π(x) = R(x)
Z ∀ x ∈ X . Why?
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Proposition

Let π(s) denote the probability of visiting state s when starting at s0 and

following PF (·|·). Then π(s) = F (s)
F (s0)

Proof : by induction.

Trivially true for the root s0 : π(s0) = 1

For an intermediate state s, if the statement is true for all s ′ ∈ Par(s), then
we have :

π(s) =
∑

s′∈Par(s)

π(s ′)PF (s
′→s) =

∑
s′∈Par(s)

F (s ′)

F (s0)

F (s ′→s)

F (s ′)

=
1

F (s0)

∑
s′∈Par(s)

F (s ′→s)

=
F (s)

F (s0)
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Proposition

Let π(s) denote the probability of visiting state s when starting at s0 and

following PF (·|·). Then π(s) = F (s)
F (s0)

Theorem (Solution)

Using PB , generate complete trajectories τ = (s0, . . . , sn = x) such that

F (st) = Fin(st) = Fout(st) ∀ t ∈ 1, ..., n

Fin(sn) = Fout(sn) = R(x)

If this objective is satisfied, we will have π(x) = R(x)
Z ∀ x ∈ X

Proof.

Applying the proposition to any final state x , we have π(x) = F (x)
F (s0)

= R(x)
Z
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V - GFlowNets : Training

Flow matching objective (FM)

A model Fθ(s, s
′) with learnable parameters θ approximates the edge flows

F (s→s ′).

The corresponding forward policy is given by

PF (s
′|s, θ) = Fθ(s, s

′)

F (s)
=

Fθ(s, s
′)∑

s′′∈Child(s) Fθ(s→s ′′)

The parameters are trained to minimize the error in the flow matching constraint
for all non-initial nodes s :

LFM

(
s
)
=


(
log

∑
s′′→s Fθ(s

′′,s)
R(s)

)2

if s terminal(
log

∑
s′′→s Fθ(s

′′,s)∑
s→s′ Fθ(s,s′)

)2

else.
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Flow matching objective (FM)

The parameters are trained to minimize the error in the flow matching
constraint for all non-initial nodes s :

LFM

(
s
)
=


(
log

∑
s′′→s Fθ(s

′′,s)
R(s)

)2

if s terminal(
log

∑
s′′→s Fθ(s

′′,s)∑
s→s′ Fθ(s,s′)

)2

else.

This objective is optimized for nonterminal states s and terminal states x
from trajectories sampled from a training policy πθ, a tempered (higher
temperature) version of PF (.|s, θ) which also helps exploration during training

πθ(.|s) = log
(
e

PF (.|s,θ)
T

)
The parameters are updated with stochastic gradient

Eτ=(s0,...,sn)∼πθ
∇θ

[ n∑
t=1

LFM

(
st
)]
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V - GFlowNets : Training

Flow matching objective

From a computational point of view, the FM loss is difficult to compute when
|Par(s)| is large, for many s, because it requires, being at a given non-initial
state s, to enumerate all its parents, to evaluate the model Fθ on each of the
parents, and to consider only the flows leading to s

Credit assignment : the states visited earlier in the trajectory have more
credits than those visited later
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V - GFlowNets : Training

Detailed balance objective (DB)

PF (s
′|s) = F (s→s ′)

F (s)
and PB(s|s ′) =

F (s→s ′)

F (s ′)
=⇒ F (s)PF (s

′|s) = F (s ′)PB(s|s ′)

This is the detailed balance constraint

It is a bit similar to the reversibility condition of Markov chains

DB ∧ F (x) = R(x) ∀x ∈ X =⇒ FM

A neural network model with parameters θ has input s and three outputs:

an estimated state flow Fθ(s)

an estimated distribution over children PB(.|s, θ)
and an estimated distribution over parents PF (.|s, θ)

Pascala Jr TIKENGb N. (Mila, DIRO, UdeM) August 15, 2023 44 / 50



Detailed balance objective (DB)

DB : F (s)PF (s
′|s) = F (s ′)PB(s|s ′)

DB ∧ F (x) = R(x) ∀x ∈ X =⇒ FM

A neural network model with parameters θ has input s and three outputs:
Fθ(s), PB(.|s, θ) and PF (.|s, θ)
The error in the detailed balance constraint is optimized on actions s→s ′

between nodes seen along trajectories.

LDB

(
s, s ′

)
=


(
log Fθ(s)PF (s

′|s;θ)
R(s′)PB (s|s′;θ)

)2

if s ′ terminal(
log Fθ(s)PF (s

′|s;θ)
Fθ(s′)PB (s|s′;θ)

)2

else.

Similarly to flow matching, the parameters are updated with stochastic
gradient

Eτ=(s0,...,sn)∼πθ
∇θ

[ n∑
t=1

LDB

(
st−1, st

)]
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V - GFlowNets : Training

Trajectory Balance objective (TB)

For any terminal state x we have :

n∏
t=1

PB(st−1|st) = P(τ = (s0, . . . , sn) | sn = x)

=
P(τ = (s0, . . . , sn = x))

P(sn = x)

=

∏n
t=1 PF (st |st−1)

F (x)
Z

This gives the trajectory balance constraint for any complete trajectory
τ = (s0, ..., sn = x) :

Z
n∏

t=1

PF (st |st−1) = F (x)
n∏

t=1

PB(st−1|st), Z = F (s0), F (x) = R(x)
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V - GFlowNets : Training

Trajectory Balance objective (TB)

A model with parameters θ outputs
▶ estimated forward policy PF (.|s, θ)
▶ and backward policy PB(.|s, θ) for states s
▶ as well as a global scalar Zθ estimating F (s0).

For a trajectory τ = (s0, ..., sn = x), the trajectory balance constraint defines
the trajectory loss (F (x) is replaced by R(x) because we want the two
quantities to be equal) :

LTB

(
τ = (s0, ..., sn = x)

)
=

(
log

Zθ

∏n
t=1 PF (st |st−1; θ)

R(x)
∏n

t=1 PB(st−1|st ; θ)

)2

The trajectory loss is updated along trajectories sampled from πθ, a tempered
version of PF (.|., θ), i.e., with stochastic gradient

Eτ∼πθ
∇θLTB

(
τ
)
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Conclusion

Outperforms MCMC, PPO (proximal policy optimization) ... on drug
discovery ...
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VI - More resources

Tutorial
I recommend my tutorial a which shows in detail how to implement the three
losses

GflowNets on Hypergrid environment : below, example with

GflowNets for Image Generation, and for GAN

GflowNets for Sequence Generation

ahttps://github.com/Tikquuss/GflowNets_Tutorial

R(x) = R0 + R1

n∏
i=1

I(0.25 < |xi/H − 0.5|) + R2

n∏
i=1

I(0.3 < |xi/H − 0.5| < 0.4)

(a) R0 <<< R1 < R2 (b) (c) GflowNets (d) reward
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VI - More resources

More details about GflowNets
https://milayb.notion.site/

GFlowNet-Tutorial-919dcf0a0f0c4e978916a2f509938b00

To go in depth: GflowNets foundations paper (Bengio et al., 2021) or
Trajectory Balance paper (Malkin et al., 2022) (very pedagogical paper).

RVs and Stochastic Processes Generation (and more) : Pierre L’Ecuyer,
Stochastic Simulation and Monte Carlo Methods, IFT-6561, DIRO, UdeM.
His book, a masterclass, is not yet public. But if you ask for access he will
send it to you. The part about the rejection method and some pictures are
inspired from this book

For Variational Bayes, I recomment this paper : A practical tutorial on
Variational Bayes (Tran et al., 2021)

MCMC and Bayesian Modeling, 2017, Martin Haugh, Columbia University a

ahttp://www.columbia.edu/~mh2078/MachineLearningORFE/MCMC_Bayes.pdf
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