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© Important concepts

@ Classical Bias variance tradeoff

© What statistical learning doesn't tell us (& PAC learning)
@ Double Descent (model-wise, data-wise and epoch-wise)
© Grokking (epoch-wise)

@ Why is it important to study such phenomena? (Al safety, OOD
generalization ...)
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Part | - Machine Learning, Deep learning

ML: Machine Learning (Wikipedia)

@ Train a model on some training data

@ This trained model can process additional data to make predictions

DL: Deep Learning

ML with a (deep) neural network as a model
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Generalization

Machine Learning (ML) and Deep Learning (DL)

@ ML : learning (using a model) from (training) data in other to
(among other things) make predictions

e DL : ML with a (deep) neural network as a model

Generalization in Machine Learning

@ Acquiring knowledge from some (training) data and effectively
applying that acquired knowledge to different (test) data

@ Ability of a ML model to perform well on new, unseen data that it
hasn't been explicitly trained on (ChatGPT)

@ Fundamental goal in machine learning because the ultimate aim is to
build models that can provide useful insights and predictions for
real-world scenarios beyond the training data
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Pascal Jr. Tikeng Notsawo (Mila)

In a few words, what is generalization in machine learning?

Generalization in machine learning is the model's ability to make accurate predictions or

classifications on new, unseen data based on its training experience.

Are you a machine learning model that generalized or did you just memorize your training
data?

| am a machine learning model based on the GPT-3.5 architecture. | generalize from the
extensive text data | was trained on rather than memorizing it. While | don't have personal
experiences or awareness, | generate responses based on patterns and information present
in the data up until my last update in September 2021. My responses aim to be contextually
relevant and helpful based on that training data, but | don't possess consciousness or

memory in the human sense.
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Bias-variance tradeoff: U-shaped curve

underfitting overfitting
zone ' : zone

generalization (test)

error

irreducible error

training error

A J

model complexity / training epochs

The U-shaped test error curve as a key consequence of the bias-variance tradeoff
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Notations (supervised learning)

e X : domain set (input space) J

X =1{0,1,...,255}78

MNIST : 28 x 28 (784 pixels) handwritten digit from “0" to "9"
Each pixel value is a grayscale integer between 0 and 255
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Notations (supervised learning)

e X : domain set (input space)
@ ) : label set (output space)

Label: 5 Label: 0 Label: 4 Label: 1 Label: 8
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MNIST : 28 x 28 (784 pixels) handwritten digit from “0" to “9"
Each pixel value is a grayscale integer between 0 and 255

X =1{0,1,...,255}"® and ¥ = {0,1,...,9}
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Notations (supervised learning)

@ X : domain set (input space)
@ ) : label set (output space)

e H C Y : hypothesis class (class of possible models we can learn)
Choosing ‘H introduces inductive bias

MNIST : 28 x 28 (784 pixels) handwritten digit from “0" to “9".
Each pixel value is a grayscale integer between 0 and 255
X ={0,1,...,255}78
y={0,1,...,9}
H = {f(x) = softmax(Wx + b) Vx € X | W € RI?*"8 p ¢ R10}

(set of linear function from X to “Y")

eh

T Yieh

softmax(h)
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Notations (supervised learning)

h=Wx+becR¥vVxeX=1{01,...,255}"8

hi
P[x € Class i] = [softmax(h)]; = ﬁ Viey=1{01,...,9}
k
1.0
0.0 )
—-0.3 PR s 1.1 x 1079
0.0 _
—11(()).1 P R 4.1 x 1079
h= o1 | = softmax(h) = . =
—35 : :
-0.3 S 9.9 x 107
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10.1
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Notations (supervised learning)

MNIST : 28 x 28 (784 pixels) handwritten digit from “0" to “9".
Each pixel value is a grayscale integer between 0 and 255

X ={0,1,...,255}7%
y={0,1,...,9}
H = {f(x) = softmax(Wx + b) Vx € X | W € R'9*"® p ¢ R1?}

@)
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Definitions (supervised learning)

Training set
Set S, of n values z; = (x;,y;) € X x Y, where x; € X’ represents a
feature vector and y; = y;(x) € ) the label of the i*" sample.

Sn - {Zly"' ,Z,-,}

Assumption (fundamental in statistical learning) : z, ..., z,, are assumed
to be i.i.d. and sampled from an unknown data distribution D .

£ ~ DZStT"Lb’Ut’LOTI(Oa G?)

z = Fz'

F e R
Medulation

T
o' € &' cRY ze g CR— ¥ = f(a) y=y" +e |

noise

truncate/resizer/.
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Definitions (supervised learning)

The loss function ¢(y, y) is defined as a function that takes two labels and
produces a value between 0 and some constant M € [0, oc], and measures
the cost of predicting y when the true value is y.

0: Y xY — [0,M]
(v, 9) = Uy, 9)
Examples :
@ Square loss : £(y,y) = |y — 9|2
o Absolute loss : ¢(y,y) =>;|yi — Jil
@ Cross-entropy : #(y,y) =>_; yilog(yi)
@ Zero-one loss : £(y,y) = —I[y # y]
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Cross-entropy : £(y,y) = —_; yilog(yi)

-1.0 1.5 x 1079

0.0 4.1 %1079 1
h= = y = softmax(h) = Vs y =

10.1 0.9 0

Uy,7) = —log (41 x107%) = 1.0 x 101 >

-1.0 1.5 x 107% 0
h= = y = softmax(h) = vsy=|
10.1 0.9 1

Uy,9) = —log(0.9) =3.4 x 107 «
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Assumption : We don't have a joint distribution, but just x being random
and y = y(x) being a deterministic or random function of x

p(z = (x,y)) = p(x)p(y|x)

¢ ~ Distribution(0, o7)
z = Fz*
FeRr®d

Medulation

o€ & CRY ze F CR " = f(z) u=y' +e |

—

noise

truncatefresizer/.

Optimal prediction

yPH(x) = arg myin Eyp(yx) [y 9)]
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Proposition

Under the square loss, the optimal prediction is the mean of p(y|x).

yopt(x) = arg myin IEyfvp(y|x)[(j} - y)2]
= argminEyp(y ) [9% —2y9 + 7]

= arg myin 92 = 2By ey Y19 + By iy Y]

=By pyixl]
& ~ Distribution(0,07)
¢ =Fz*
b
J—
o' e Z* CRT ve g CR— ¥ = f(a) y=y +e |

yPH(x) = Ee[f(x) + ] = f(x)
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Under the absolute loss {(y,y) = |y — y|, y°P*(x) is the median F;‘i(l/Z)

of p(y|x), with F,, the cumulative distribution function of p(y|x).

Proposition

| A\

Under the zero-one loss {(y, ) = I[y # 9], y°P*(x) is the most frequent
prediction : arg max, p(y|x) = arg max, p(y, x).

A,

£ ~ DZStT"Lb’Ut'LOWJ(Oa 0'52‘)

z = Fz'

F e R
Medulation

st e & CRY ze ¥ CR— ' = f(a) y=y'+¢ |

noise

truncate/resizer/.
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Given f € H and the data distribution D.

RIf| = Bpeyyltls O = | 40y, F(:)pla)d

Empirical Risk

Given f € H and a dataset S, = {(x1,)1),---, (X0, ¥n)}

Rs,[1= = 3 tlyi, F(x)
i=1

Generalization Gap

e&'1f1 = IRIf] - Rs, [l
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Learning algorithm (in practice) : Empirical Risk Minimization

A (X x V)" — H
Sn = A(Sn) = f = argmingcy Rs, [f]
Examples: Gradient Descent (GD) and Stochastic Gradient Descent

(SGD), L-shaped method (stochastic programming), stochastic dual
dynamic programming ...

(GD) : FHD) = () _ o, VR, [F¥)]

Optimal model

Model for which f(x) = y°P(x) ¥x € X

Examples: In the case of zero-one loss, the optimal model is the Bayes
classifier, and its loss is called the Bayes rate.
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¢ ~ Distribution (0, 07)
noise

y* = f(z) J—L{ y=y +e J

= Fz
Fe R
Modulation.
- _Jre X cRrY
e XTCRY T
truncate/resizer/ —m
9= fle) 1y, 9)

soft labels
predictions

distilled| knowledge

hard labels
predictions € true label

Training data
Student

Example : Knowledge Distillation
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We care about these three levels of stochasticity

@ Noise € : Ec =0 and Vare = 02

@ Choice of Sy = {(x1,¥1), .-+, (Xn, ¥n)} C (X x V)" for a given n € N*

o Learning algorithm A, hence £(S,) = A(S,)
e Gradient Descent (GD)

/\

FHD) = £ _ 0, VRs [F)] = F() — VZE vi, FO(x;)

e Stochastic Gradient Descent :

o ~U{L,...,n})
FOD = £ — 0, VR (s, 4y [FO] = O — aeVe (i, FO(x,))

o Mini-batch gradient descent (with batch-size m € {1,...,n})

Bt Nu(Pm ({1,,/7}))

FHD) = £(0) _ o, VR [F(1)] = £ — O‘f v > Uy, F9(x))
i€EB:
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We care about these three levels of stochasticity

@ Noise € : Ec =0 and Vare = 02
@ Choice of Sy = {(x1,¥1)s-- -, (Xn, ¥n)} C (X x V)" for a given n € N*
o Learning algorithm A, hence 7(S,) = A(S,)

e Stochastic Gradient Descent, Mini-batch gradient descent, ...

o Regularizers: weight decay, early stopping, ...

o Choice of hyperparameters: learning rate (and its scheduler) {a:}+>0,
weight decay coefficient ...

Initialization (iterative method) : choice of £(®)
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We care about these three levels of stochasticity

o Noise € : Ec =0 and Vare = 0?2
@ Choice of Sy = {(x1,¥1), .-, (Xn, ¥n)} C (X x V)" for a given n € N*
o Learning algorithm A, hence (S,) = A(S,)

We don't care about

@ The choice of # C Y* (MLP, CNN, RNN, ...)
Choosing H introduces inductive bias

@ PAC (Probably Approximately Correct) learning:

e Occam's (Razor) bound put a prior over H before seeing the training
dataset S,

e PAC Bayes bound put a prior probability distribution over H before
seeing S, and a posterior probability distribution over H after seeing S,

@ etc.
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Part Il - Bias-variance tradeoff: U-shaped curve

underfitting overfitting
zone ' : zone

generalization (test)

error

irreducible error

training error

A J

model complexity / training epochs

The U-shaped test error curve as a key consequence of the bias-variance tradeoff
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Bias-variance decomposition
True Risk, Empirical Risk

RIfF] = Epopynllly, FO)] and R [fl=— S tly,7(x))
(x,y)ESn

We care about these three levels of stochasticity

@ Noise € and the choice of S, € (X x ))" for a given n € N*
o Learning algorithm A, hence £(S,) = A(S,)

Bias-variance decomposition

Given f = A(S,)

R[f] =E[{(y, f(x))] — Bias? [f} + Var[f] + Noise (Irreducible error)
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Bias-variance decomposition : example with the Square

loss

RIf] = E[(y — f(x))?]

=E[y? + 2(x) — 2yF(x)]

_ +  E[FP(x)] —2E[f(x)]

_ + Var[f] + E?[f] — 2E[y]E[f(x)]
But

Ely] = Ec[f + €] = Ec[f] + Ec[e] = f

and
Varly] = E [(y = EW])’] = E[(f + ¢ = )] = E[] = Varld+E?[q] = o?
So

RIf] = + Var[f] + E*[f] — 2fE[f(x)]

13-14 September 2023 28 /94

Pascal Jr. Tikeng Notsawo (Mila) Rethinking Generalization in Deep Learning



Bias-variance decomposition: example with the square loss

A,

R[f] = + Var[f] 4+ E?[f] — 2fE[f ()]
= 02 + Var[f] + £2 — 2fE[f(x)] + E[f]
— +Var[ﬁ]+( —2fE[f(x)]+F2[f])
_ +  Var[f] +|E[f]-

~— ~—— ~——
Noise (Irreducible error) g [(f*E[f])Z] Bias[f]
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Var[f ias?[f
Noise (Irreducible error) arlf] Bias”[f]

Rifl= o2 4E (F—Elf)"| + (217 1)

underfitting overfitting
zone.

generalization (test) fror

.+ variance

model complexity training epachs

/ ~ £

Underfitting X Optimal Balance

Overfitting
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Bias-variance decomposition: The general recipe for any
loss function (Domingos, 2000)

Expected loss for each input feature vector
0 S, ={S, € (X x))"} : set of training sets of size n

o V,(x)={A(Sn)(x) | Sn € Sy} : multiset of the predictions produced

for example x by applying the learner to each training set in S,

Rn(X) = ]EyrvY,,(x), y~p(y|x) [E(y,;?)]

Main prediction

Value whose average loss relative to all the predictions in Y,(x) is
minimum (i.e., it is the prediction that “differs least” from all the
predictions in Y,(x) according to ¢) : “central tendency” of the learner

y7(x) = arg min By, o[£y, )]
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Main prediction
o S, ={S, € (X xY)}
@ Y,(x)={A(Sn) | Sn € Sp}

o yi(x) = argminy Eyy, [y 9)]
It is a measure of the “central tendency” of a learner.

The main prediction y*"(x) is

o the mean £y, (. [y] of the predictions in Yn(x) under squared loss
@ the median F{nl(x)(l/2) of Yn(x) under absolute loss

@ the mode arg max, fy (.)(y) of Ys(x) (i.e. the most frequent
prediction) under zero-one loss
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o yPH(x) =argming E, 0,1 (Y, 9]

@ Yn(x) = {A(Sh)(x) | Sn € (X x V)"}

o y“7(x) = argminy By y, () [0y, 9)]

@ Bias (square): loss incurred by the main prediction relative to the
optimal prediction

Bias?(x) = £(y°P*(x), y*"(x))

@ Variance: average loss incurred by predictions relative to the main
prediction

Var(x) = Ey . y,(x) [£(y""(x), y)]

@ Noise : unavoidable component of the loss incurred independently of
the learning algorithm

Noise(x) = E, (1) [((y, yP(x))]
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For a given loss functions ¢, we are looking for two constants ci(x, ¢) and
c(x, ¢) such that

Rn(X) = IE}“/NY,,(X)7 y~p(y|x) [ﬁ(yd})]
= Bias?(x) + c1(x, £) - Var(x) + c2(x, £) - Noise(x)

Proposition (Domingos (2000))

o For square loss {(y,9) = (y — 9)?, c1(x,£) = co(x,0) = 1
@ For zero-one loss {(y,y) = [y # ] in two class problems,
o ci(x,0) = 2P (x) — 1
o cx,€) = 2A[y""(x) = yP(x)] - 1
with
Ps, (x) = Ply®(x) € Yn(x)]

the probability over training sets in S, that the learner predicts the
optimal class for x.
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Part Il - What statistical learning doesn't tell us

= Noise (Irreducible error) + Var[f] 4 Bias® [fj

underfitting overfitting

.+ variance

/ ~ £
en 0 \.___/ \/\\/\/\I\/

> 3 »

X

Underfitting X Optimal Balance Overfitting
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What statistical learning doesn't tell us

0.1 4 T T T - | - . .
= Training

0.09r —e— Test (at convergence) |
—a— Test (early stopping)

0.08f

0.07f

0.05f

Error

0.04f

0.02f

0.01f

s " s

0 1 1 L e . o
4 8 16 32 64 128 256 512 1K 2K 4K
H

Neyshabur et al. (2014) found that test error simply decreases with network width
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What statistical learning doesn't tell us

There is growing evidence that test error acts as the classic U-shaped

curve in the under-parameterized regime and monotonically decreases in
the over-parameterized regime (Belkin et al., 2018).

under-fitting . over-fitting

| under-parameterized over-parameterized
. Test risk

Risk

Test risk
“classical”
regime

Risk

“modern”
interpolating regime

> < Training risk
sweet spot_ v —

Training risk:
Capacity of H o

. _interpolation threshold

Classical U-shaped test error curve Double Descent

Complexity /Capacity of H

@ We use the number of parameters of our model

@ Others: VC dimension, Rademacher complexity, etc ...
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Some results from statistical learning: PAC learning

https://study.com/academy
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Some results from statistical learning: PAC learning

Definition (PAC Learning (Mitliagkas, 2023))

A hypothesis class H is (Agnostic) PAC learnable if given some arbitrary
7> 0 and 0 € [0, 1] there exists an ny(7,d) such that for any S, with
n = ny(7,0) we have

Ps, [egi"[f] < T} > VfeH
Literally speaking, €%"[f] < 7 holds with probability at least for any
feH.
@ The “probably” (P) part of PAC corresponds to while the

“approximately correct” (AC) part corresponds to T

@ The small ny(7,d) we can find is known as the Sample Complexity of
the hypothesis class H
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Some results from statistical learning: PAC learning

Theorem ((Mitliagkas, 2023))
Any finite hypothesis class H is agnostic PAC learnable

Bound on the generalization gap €& = |R — Rs, | for finite

In fact, let 9, 7 € R,.
o For f = A(S,) e H

Proof. : See below
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Generalization Bound for Finite Hypothesis Classes
(Mitliagkas, 2023)

Lemma (Markov's Inequality)

Let Z be a non-negative random variable. Then for any a > 0,

IP[ZZa]glELZ]
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Generalization Bound for Finite Hypothesis Classes
(Mitliagkas, 2023)

Lemma (Chebyshev's Inequality)

Let X be an integrable random variable with finite expectation and finite
nonzero variance. Then for any a > 0,

P[|IX — E[X]| > ]<Var[X]

Let Z = |X — E[X]|. Using the Markov's Inequality, we have

Pz a =B[22 > 2] < P21 _ EUX—EX)T _ VerlX]

32

Pascal Jr. Tikeng Notsawo (Mila)
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Generalization Bound for Finite Hypothesis Classes
(Mitliagkas, 2023)

Lemma (Generic Chernoff’s Bound)

Let X be a random variable. Then for any t > 0,

P[X > al =P[tX > ta]:IP’[etX > et"} <

We can minimize the bound with respect to t to get the tightest
upper-bound, i.e.

P[X > a] < inf e “E [etx}
t>0

Such probabilistic bounds that show some random variable is close to its
mean with high probability are called concentration bounds.

Pascal Jr. Tikeng Notsawo (Mila) Rethinking Generalization in Deep Learning 13-14 September 2023 43 /94



Generalization Bound for Finite Hypothesis Classes
(Mitliagkas, 2023)

Lemma (Hoeffding's Lemma)

Let X be a random variable taking values in the interval [a, b] such that
E[X] = 0. Then for A > 0,

A2(b—a)?
E[e’\x] <e (8 :

Since the exponential function e is convex

b— Xe,\a i X - aAb > a5y Nt =IAb _ AX
b—a b—a
b—E[X] ),  E[X]—a b i, a b AX
525
b—a er T b—a € b—ae b—ae - €

Pascal Jr. Tikeng Notsawo (Mila) Rethinking Generalization in Deep Learning

13-14 September 2023 44 /94



= e bia)\(b_a)eln( bfa_ biae)\(bia)

a )\(b—a)-i-ln( b a eA(b*a))

= eb—-a b—a b—a
— eL(A(b=a))
with
a b a 4 1,
L(h) = h+1 — < =-h° YheD L
(h) — +n<b—a b—ae>_8 Vh € Dom(L)
So
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a  ae
b—a b— aeh (b — aeh)?

Using the Lagrange form of the Taylor Theorem, there exists £ €]0, h[ such
that

L'(h) =

and L"(h)=—

L(h) = L(0) + hL'(0) + %h%”(g) = %h%”(g)

On the other hand, since a < 0 < b (otherwise E[X] = fab xp(x)dx #0)

—ze3¢ —3¢ _
0< e26y/—ab = e26\/ —aerébe 3¢ < e36%¢2 —2|—be S b 2‘365
(b— aeg)2 abes 1
W) ey = -2
(&) (b— aet)?

— —abet <
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Generalization Bound for Finite Hypothesis Classes
(Mitliagkas, 2023)

Lemma (Hoeffding's Inequality)

Let Z3,...,Z, be independent random variables such that
Pla<Z <b|=1foralli€[n]. Let Z=1L5""Z. Then, for any
T>0:

72n7—2

P[|Z —E[Z]| > 7] < 2e6-a7

This expression says that for any positive 7, the sample mean Z will be at
least 7 away from its expected value E[Z] with a probability that decays
exponentially with the number of training examples n we have.
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Let X; = Z; —E[Z] for all i € [n], and X = %27:1 Xi. Then for all A >0,

E[e)\)_(:|
==
e E [e% 7=1X'}

n n
— VR He%xi - ef)‘THE [e%xf} (independence)
i=1 i=1

Az(b E[Z] _a—E[Z])?

oA H e T (Hoeffding's Lemma)

(Generic Chernoff’'s Bound)

| /\

2(b—a)? n o A2(b—a)?
= _)\T H e 8n? e—)\TeZ,':l 8n?

3)2

2(b—
ef)\TJr on
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Let X; = Z; — E[Z] for all i € [n], and X =137 | X;. Then,

_ ) +>\2(b7a)2
]P’[XZT]Se T 8n YA >0

A2 (b 2)2 _ 2nT°_
= P[X > 7] < m>|r3 e N T = (b

2n72

By the same argument, we can show that P[-X > 7] < e (»-9? since

E [e"\)_(]
v _ —-AX A
P[-X > 7] =P[e > eV < e
n A
= e\ | | E [e_FX'}
i=1
n 2 s R
=e M | | eA o £ = *AT+7“’ :
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Let X; = Z; — E[Z] for all i € [n], and X = £ 3" | X;. We have

P[|X| > 7] = P[X > 7] + P[X < —7]
=P[X > 7]+ P[-X > 1]

_ 2n72

< De (b-2a)?

with
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Generalization Bound for Finite Hypothesis Classes
(Mitliagkas, 2023)

Lemma (Hoeffding's Inequality)

Let Z3,...,Z, be independent random variables such that
Pla< Z <bl=1foralli€[n]. Let Z=213"" Z. Then, for any

7>0:
2

P[|Z —E[Z]| > 7] < 2¢@-7

For a given dataset S, = {(x;,y;)}"_; and a hypothesis f € H
independent of S, let Zi = {(yi, f(x;i)).
Then we get

Z =25ty flx) = Rs, ]
i=1

and
E[Z] = E [Rs, [f]] = RIf]
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For a given dataset S, = {(x;, yi)}"_; and a hypothesis f € H
independent of S, let Z; = (yi, f(xi)).
Then we get

Z =2 U F) = Rs lf] and (2] = E[Rs,[1]] = RIF)

So B _
1Z - E[Z]| = £"[f]

and (since 0 < Z; < M)

2
P[£"[f] > 7] < 2e e p (€1 <7] >1—-2e -
—2nT2

If we set 2e M2 < § < 1, we can solve to get n > —

This n guaranteed

M2y 8 _ M? .2

Ple&fl<7]>1-96
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Let F = A(S,) € H and Z; = £(y;, F(x;)). Then we get

- 1< . PN
zZ=- ;f(ylw f(xi)) = Rs,[f]
But
E[Z] = E [Rs, [f]] #RIF]
So
|Z — E[Z]|#<&11]
We can't use the Hoeffding's Inequality directly. But we have :

st 0 =] < g

Rs.[f] — R[f]‘ > T]

=P [Uren {| R[] - RIfY| = 7}]
<3P H/%Sn[f] - R[f]’ > 7| (union bound)
feH

72n-r2
< 2|H|e ™2
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For a given dataset S, = {(x;, y;)}"_;, let f = A(S,) € H and
Z: = ((y;, F(x;)). Then we get

Z = %Z yl7 I I%Sn[f]
But _ o .
E[Z] = E [Rs, [f]] #RI7]

So
|Z — E[Z]|#5"[]

We can’t use the Hoeffding's Inequality directly. But we have :

[gen[f] > 7'] < 2[H|e 12\/122 — P [ege”[f] < 7_} 1 2Hle M22
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Bound for Finite Hypothesis Classes (Mitliagkas, 2023)

We can't use the Hoeffding's Inequality directly. But we have :

[ £F] > T] < 2H|e N =P [ege”[f] < 7'} >1-—2|H|e e

—2n72
If we set 2|H|e m? < <1, we can solve to get n > 57 In Z‘Z'”
This n guaranteed

{ge”[f]<r] >1-4§

Consider for example
Hy = {f(x) — Wx+b¥xeR?| 0= (WeRCXd,beRC)}

In theory, |Hg| = oo (N1)

But if the numbers are stored on g > 2 bits (for example 32 or 64),

we get [Hg| = 29¢(d+1)
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Non finite H : VC dimension (Mitliagkas, 2023)

Definition (Shattering)

A set of points €2 is shattered by a hypothesis class # if there are
hypotheses in A that split Q in all of the 219 possible ways; i.e., all
possible ways of classifying points in Q are achievable using concepts in H.

Definition (Vapnik-Chervonenkis dimension)

The VC dimension of a hypothesis space H is the cardinality of the largest
set € that can be shattered by H. If arbitrarily large finite sets can be
shattered by H, then the VC dimension of # is infinite (c0).

For ¥ =R and ) = {0,1}. The VC dimension of H = {I[x < a] | a € R}
is 1.
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Non finite H : VC dimension

Definition (Vapnik-Chervonenkis dimension)

The VC dimension of a hypothesis space H is the cardinality of the largest
set €2 that can be shattered by H. If arbitrarily large finite sets can be
shattered by H, then the VC dimension of H is infinite (c0).

Theorem (Bound base on the VC dimension)
Let 6 € [0,1]. Forf € H

Ps, |RIf] — Rs,[f] < n{VC(H)OOgVS,(,H)H)Hog‘;} _
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Some results from statistical learning: PAC learning

Theorem (Occam'’s Razor bound (McAllester, 2013; Mitliagkas,
2023))

Let § € [0,1]. Given a prior distribution p over H, we have for
f=A(S,) eH

log —L- + log 2
ogp(f)—kog5

T>M 5 = Pg, [R[fe]—/'é\)gn[f]ST} >
n
@ If our prior distribution gives more probability to f then log p(l,?) will

decrease, therefore giving a tighter bound and vice versa

o If, however, we don't give any probability to a hypothesis f (i.e
p(f) = 0) then log - will be undefined, which provides a vacuous

p(f)
bound
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Occam'’s (Razor) bound (McAllester, 2013; Mitliagkas,

2023)

For a given dataset S, = {(x;, yi)}"_;, let f = A(S,) € H. We have :
P[] > 7] < 3P [|Rs, [~ RIFY| 7]
feH

<Y op(f)=4

feEH
if P Hésn[f] - R[f]‘ > T] < op(f) Vf € H

— I77'2
This last condition is satisfied is we set 2e " < dp(f) <1, thatis

Iogﬁm log ﬁ—l—log%
T2 M\ = = M\
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Occam’s (Razor) bound : Example

Consider
?—[gz{f(x): Wi+ bVx eRY | 6 = (WeRCXd,bGRC)}

In theory, |Hg| = co (X1). But if the numbers are stored on g > 2 bits (for
example 32 or 64), we get |Hy| = 29¢(d+1)

Using a regularizer 3 ||6]| is equivalent to putting a prior on H :
o Laplacian prior for £1-norm [0 =37, . W[ + 37, |bj]
e Gaussian prior for £3-norm |63 = i) lej + 3, b?

p(e) — #e—%(vec 6)TX1vech
(2m)k[Z|

6©) ~ p(6)

Pascal Jr. Tikeng Notsawo (Mila) Rethinking Generalization in Deep Learning 13-14 September 2023



Some results from statistical learning : PAC learning

Theorem (PAC Bayes bound (Shalev-Shwartz et al., 2014; Mitliagkas,
2023))

Let § € [0,1]. Given a prior distribution p over H and a posterior
probability distribution q over H, we have for all f € H

Ps, [Equ [R[f] - f\’gn[fﬂ < \/KL(qHP) +|ogg] .

2(n—1)

If we update our distribution over hypotheses using the posterior, g, so
that f performs well on the empirical risk, it ensures that we can reduce
Equli’gn[f] more than if we just sampled from the prior p. Here are some
examples of posteriors:

A

e g(f) =1 = KL(q||p) = oo and the bound explodes

e g =p = KL(q||p) = 0 and the bound becomes tight.
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Part IV - Double descent

014 T T T - | - . .
= Training

0.09r —e— Test (at convergence) |
—a— Test (early stopping)

0.08f

0.07f

0.05f

Error

0.04f

0.02f

0.01f

s " s

0 1 1 L e . o
4 8 16 32 64 128 256 512 1K 2K 4K
H

Neyshabur et al. (2014) found that test error simply decreases with network width

Pascal Jr. Tikeng Notsawo (Mila) Rethinking Generalization in Deep Learning 13-14 September 2023 62 /94



Part IV - Double descent

There is growing evidence that test error acts as the classic U-shaped

curve in the under-parameterized regime and monotonically decreases in
the over-parameterized regime (Belkin et al., 2018).

under-fitting . over-fitting

under-parameterized

Test risk

A over-parameterized

Risk

Test risk
“classical” . “modern”
regime . interpolating regime

Risk

> < Training risk Training risk:
sweet spot v ~ _ S~ _ . _interpolation threshold
Capacity of H

Classical U-shaped test error curve Double Descent

Complexity /Capacity of H

@ We use the number of parameters of our model

@ Others: VC dimension, Rademacher complexity, etc ...
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Epoch-wise Double-Descent

Er(L@ty)] = L. §) +BETIL(T, )],
Bias Variance

where (3 takes different values for different loss functions, and g is the expected output:

g=  agmin  Er[L(y",y).
yrere| S, wi=1lyp>0
VGG11 VGG13 VGG16
0.30 0.40 09
025 L 035 L 08 — loss
G g ]
> 2 030 2
z 020 E E 0.7
° R | 206
Lo 2 g
a Q020 a
o o o 05
= 0.104\\" - » = 015 e - o =
o™ 0.4
0.05 0.10
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
epoch epoch epoch
ResNet18 ResNet18 ResNet34
0.30 0.40 0.8
0.35
‘rﬁ 0.25 ; | ‘rﬁ 0.7
2 > 030 < A
@ @ @
© © © 0.6
s 32 )
a @ 0.20 Q05 \
S <] s <] W
= = WA At s = g OOV
015 04
010
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
epoch epoch epoch
(a) SVHN (b) CIFAR10 (c) CIFAR100

Epoch-wise Double-Descent (Zhang et al., 2021)
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Sample-wise Double descent

Test Risk vs. Samples 5 Test Risk vs. Samples (Theory)
Test MSE —— Test MSE
W Bias
4 4 Variance
ws 3
=
0
22 } 2
1 y‘ 1
it
\JJL L
05 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Num. Samples Num. Samples
(a) Test MSE for d = 1000,0 = 0.1. (b) Test MSE in theory for d = 1000,0 = 0.1

Test MSE vs. Num. Train Samples for the min-norm ridgeless regression
estimator in 1000 dimensions (Nakkiran, 2019)
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10
ma

Figure 3: Model-wise double descent. Analytical training error and test error evolution with parameters
(o127 5, X) = (0.5.0.3.3,2..0.4,0.001). Note that we vary the number of model parameters (1)

R Train Test e

as

0f 0t
ma ) ma)

Figure 4: Sample-wise descents. Analytical training error and test error evolution with parameters
(0,7 5, A) = (0.9,0.1,2,1, 0.8,0.0001). Note that we vary the number of samples ().

Train

. 1ot
time

Figure 5: Epoch-wise descent structures. Analytical test error evolution with respect to different values of A
(o100, .7 8) = (0.5,0.3,6, 3, 2.0,0.5). Here the ratio of number of parameters and samples s fixed.

Model, sample, epoch-wise descents in random feature model (Bodin et al., 2021)
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Double Descent : Linear teacher-student setup

g~ N (0,0’5)

2"~ A(0,%) ‘
noise

2= diag(afﬁ.,,,aﬁ)\ y' = f(z*) = wla* }—l—ﬂ y=y"+e ‘

Modulation p ¢ goxd J
e ~ ~ n

= FTa* ~ A(0,FEFTY ™ |§ = f(z) = 0"z = @ F 2" 1 AT IE
T x ( ) i = f(z) zn;(y y) +2||wH
Isotropic Anisotropic

Ilele]wt iea!urevsr . T"pu,( feq!urgs
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Double Descent : Linear teacher-student setup

y=Ff(x)=wlx*+e with x*~N(0,0?), e ~N(0, 0?)

T

g=Ff(x)=w'x with x=FTx*

True Risk : generalization error

RIW] = Ex« [(WTFTX* —wlx* — €>2:|

=~ (vT/TFTx* = WTX*)2 — 2E+ [(WTFTX* — WTX*) e} + E.€?
= Cov [(FI;I\/ - W)TX*} + 0?2
= (FW — w)TX(FW — w) + o2
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RW] = (FW — w) T S(FW — w) + 02 = |FW — w|% + o2

Theorem (F = L)
T

e Optimal prediction : y°P*(x) = w'x

o Main prediction : y“"(x) = w'x

@ Average bias :
Bias?[#] = E,. Bias2(x) = (w — E[#])T T (w — E[#]) = |w — Ei||
@ Average variance :
Var[w] = E, Var(x) = tr(Cov(w)X)
Cov(#) = E [(v?/ _E#) (W —Ew)T

e Noise : Noise(x) = o2
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Training : Empirical risk (F = 1)

X = [Xi]?:]_ € RnXda Xi NN(OaZ)
Sh=(X,Y) with { e=[e]"; €R", ¢ ~ N(0,02)
Y =Xw-+ececR"

Y = Xw eR"

5 A 1 ¢ \/ 2 A A2

Rsn[W]ZﬂZ(Yi—Yi) + S lwl

=1
AsTa
fHY YH2+ Tw
= 7(XW — Y)T(XW -Y)+ AT
2n 2

1 XTX 1 1
= 2vT/T( . —f—’y]ld) w—=-YTXw+—=YTY
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Training : min-norm least squares estimator (F = 1)
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Training : Gradient Descent (F = 1)

W) = (0 — o, VRs [w(1)]
XTXx XTy
= (1 — Oét"}/]ld) — ¢ W(t) — Ot
N L
At bt
t 1 k—1
- (H At> W0y (H A> b be
At = (]_ — Oét")’]:[d) — ¢ — (]. — Oét’}/]ld) — Oétz
n—o0
XTy el X
bt = Ot n = Ot <WT “I— n ) — OthTZ

n—o0
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Linear teacher-student setup : training

Training : Least Square Solution and Gradient Descent (F = I4)

T TX
o () (729

far=a VteN, A=(1-avly) —a and

: eTX
A(t+L) — At+1A(0) k T -
W AT W « (kEOA ) (W + - >

Informal theorem : Under certain conditions on the value a (small

enough), the rank of 1 ooo &

lim w(® = @ts
t—o0
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Model (d) and Sample (n) wise double descent : Linear

teacher-student setup

@ Generalization error

RIW] = (W — w) "E(W — w) +0? = |W — w|§ + o2
@ Average bias :
Bias?[W] = Ex Bias?(x) = (w — E[#])" = (w — E[W]) = ||w — Ew|2
@ Average variance :

Var[w] = Ex Var(x) = tr(Cov(w)X)

o Noise : Noise(x) = o2
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Model (d) and Sample (n) wise double descent

Theorem (Informal (Hastie et al., 2019))

@ Let aw = d/n be the overparametrization ratio
@ Assume F =14, ¥ =14

o Assume ||w||3 = r? for all n and d

As n,d — oo such that d/n — a € (0,00), it holds almost surely that

1 1
Bias?[w!] = r? (1 — ) and Var[w!®] = 0?2 ——
«

11—«
O—Sﬁ if o <1
SNR
=
RIW"] 2 1 21 2| 1 1 :
rPl-3)toirg =0l | 5 1=3) ta| ifa>1
€
Pascal Jr. Tikeng Notsawo (Mila)
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1 1
Bias?[w!°] = r? (1 — > and Var[w!] = 06217
(@ -

R[] = o2 [1_10411 o< 1]+ [SNR <1 - 1) 4 1EOJ I[a > 1]]

@

Isotropic features

10
1

SNR =1
SNR =2.33
SNR = 3.66
SNR =5
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Multiple descent

n+8 n+3 nd0 n#l nd2  nd3  na4
Dimension of data d

Multiple descent phenomenon for the generalization loss Ly versus the dimension
of data d in the overparametrized regime starting from d = n+ 8 (Chen et al.,
2021)

— . Hen

012{ b epHI

ain MSE
st MsE

025 050 075 100 125 150 175 200 025 050 075 100 125 150 175 200
o oy

Multiple descent phenomenon for random feature model (Bodin et al., 2021)
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Epoch (t) wise double descent

For a,b,c € R, let f(a) = 329, e;(t) for all o € [—1,1]¢ with
&i(t) = a(af)? + b (1 — af)? + caf (1 - af)

Let’s assume without loss of generality that ¢ = 0. If a; € [0,1], ei(t) is a

superposition of two U-curves and reaches its minimum at
b—+/ab
. Iog( T

= IOgIa/)' If aj € [-1,0], ej(t) converges by oscillating.

(a) a; = 0.8 (b) a;=—0.8
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Epoch (t) wise double descent

Theorem (Informal (Notsawo, work in progress))
o Let o = d/n be the overparametrization ratio
@ Assume F =14, X =14
o We also assume Ew; = 0 and Var w; = o2, for each i € [d]
° Ev“v(o) =0 and Var v“v,-( ) = (r ) for each i € [d]

SNR =02, /02 : signa/—to—no:se ratio

e INR = a /0%, : initialization noise ratio

d
R =02 + Ex Y _ &i(t)
i=1

2 d d
R [ = 5 | 25 +7907%,d +Bx 3- (i +7) ei(t) | +7Ex 3 gi(t)
i=1 i=1

Pascal Jr. Tikeng Notsawo (Mila) Rethinking Generalization in Deep Learning 13-14 September 2023 79/94



Epoch (t) wise double descent

d
R[W(t)] = 0'62 + Ex Z e,-(t)
i=1

d
+7Ex Z 8i(t)
i—1

0'
= d+E )\ ;
a+’w + XIZ; +7) ei(t)

N

2 2 Y
ow T %0 i if \i =
A

I:Z +,Yzo_a/

a2t (O‘ + 02 ) + iviv af(1—ab)+ 7( o7 ) (1—at)® if A #

Uw—i—aw(o) ifA\i=0A~r=0
(1 -\ (o—gv n ogv(o,) + % (1 (1—nA)%)° A #£OVAy#0
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v =0and XX full rank (i.e. \; # 0 VA; € Spectral (Q>)

d
R =02 +Ex Y e(t) and Rs,[w] =
i=1

N =

%—FE)(Z)\G, ]

2
(o8 +50) (1= + -2 (1= (@ = n0))°

2 2
T (0) na2 0z 1
1 1—n\;
( + o2 ) (( nA;) ) + o2 R

b a=1
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y=0and % X full rank (i.e. A\; # 0 VA; € Spectral (X X))

As n,d — oo, g converge to ¥, so the \; — o2 for all i € [d].

2 d

g

EG—FEX E a?ei(t)]
i=1

d
A 1
A(t)] __ 2 i ~E)] —
Rw! )]—0€+IEX§_1:e,(t) and  Rs [w! )]_E

ei(t) = (05, + 020) ((1 - 77""2)t>2
| (14 %) (- )2e Gy - o)

< ana
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Epoch-wise Double-Descent: feature learning base

explanation (Pezeshki et al., 2021)

1
o ¥ =1, and F = UEA:V/] # I4 under singular values decomposition

o Cov(FTx) = FFT = VEAgV/, thus creating a correlation between
the input features and allowing a second descent.

@ The modulation matrix, F € R¥%9 under a singular value
decomposition has 2 singular values : o1 and o2, with g2 > 03

@ condition number of F : kK = g—f > 1

generalization error

10° 10! 102 10° 10* 10° 10° 107
Training time ¢
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Part V - Grokking

Modular Division (training on 50% of data) _(.’ Steps until generalization for product in abstract group -
100 ;lf,,m aas *|a b ¢ d e
& N
8
n
80 > \ ala d ? ¢ d
g 1w M
L 60 s & blc d d a ¢
g 2 \
g $ TNt
g a0 H = c|? e d b d
3 10
w @ dla ? ? b ¢
§ A 510 ~
3 o n5-10°y
o g
£ e|lb b ¢ ? a
10 10 10 10¢ 10 10 o B s pys v
Optimization Steps Taining data fraction

Generalization after overfitting (Power et al., 2022), training and validation
accuracies. Training accuracy becomes close to perfect at t, < 1k optimization
steps, but it takes close to t; ~ 1000k steps for validation accuracy to reach that
level.
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Grokking: late generalization
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Four learning phases (Liu, Kitouni, et al., 2022)

@ Confusion : t € [0, t1]
@ Memorization : t € [to, t3]
e Comprehension : t € [t3, 0]

o Generalization : Pty < o0] =1
The measure P captures randomness in choice of training and
validation points, noise in data, learning algorithm (initialization,
noise in optimization...)

Modular Division (training on 50% of data) _b

100

60

Accuracy

40

20

10 10 10 10* 10° 10"
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@ Generalization : t; < oo almost surely (wrt the randomness in
initialization, choice of training and validation points, noise in
optimization...)

o Grokking = a generalization with t; > t».

Modular Division (training on 50% of data) _k'
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— val |
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4 40
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Optimization Steps
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Spectral Signature of the loss is correlated to
generalization (Notsawo et al., 2023)

Spectral Energy (Hjorth's activity)

@ 0(t) : parameter update at time t given the optimization algorithm
o L(t): loss at O(t)

e F(L) : Fourier transform of L(t)

o my(L) = [w"|F(L)(w)|?dw : the n®" moment of F2(L)

o || F(L)(w)||? : energy spectral density present in the pulse w

@ Hjorth's activity mg(L) : signal power

00 02 04 07 09 11 13 16 18 20 25 30 35 50
weight decay 00 02 04 07 09 11 13 16 18 20 25 30 35 50

(a) Energy: 400 steps (train loss) (b) Final test accuracy (10K steps)
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Grokking loss landscape (Notsawo et al., 2023)

(a) Loss surface : f;(a) = Loss(0: 4 ady) (b) Accuracy : fi(a) = Acc(b: + adr)

r = 0.30 (less data), 0y o 6* — 6,

r = 0.85 (more data), 0; o 6* — 6,
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Others observations (Notsawo et al., 2023)

o Larger condition numbers Amax/Amin Of the hessian of the grokking
loss: leading to a slower convergence of gradient descent.

@ The optimization dynamics is embedded in a low-dimensional space:
more than 98% of the total variance in the parameter space occurs in
the first 2 PCA modes much smaller than the total number of weights,

@ The model remains in a lazy training regime most of the time: the
cosine distance between the model weights from one training step to
the next remains almost constant, except at the slingshot location.

Under realistic hypotheses (Dziugaite et al., 2017) :

@ SGD finds good solutions only if they are surrounded by a relatively
large volume of solutions that are nearly as good

@ SGD performs implicit regularization or tends to find solutions that
possess some particular structural property that we already know to
be connected to generalization, like widder minima
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Grokking : "LU mechanism” (Liu, Michaud, et al., 2023)

generalizable large init
solutions
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Figure 1: (a) w: Ly norm of model weights. Generalizing solutions (green stars) are concentrated
around a sphere in the weight space where w ~ w, (green). Overfitting solutions (orange) populate
the w = w, region. (b) The training loss (orange) and test loss (gray) have the shape of L and U,
respectively. Their mismatch in the w > w, region leads to fast-slow dynamics, resulting in grokking.
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Grokking : Good Representation (Liu, Kitouni, et al.,

2022)

@ Generalization can be attributed to learning a good representation of
the input embeddings

@ The critical training set size corresponds to the least amount of
training data that can determine such a representation

Initialization (0 iterations) Overfitting (1000 iterations) Representation Learning 82(]()[)(1 iterations)
train acc: 0.0 — val acc: 0.0 train acc: 1.0 — val ace: 0.1 train acc: 1.0 — val ace:

04 2270625
@ ng® ® 2332222101
7 33 9
12 23 12 40 8
21 35 30 4 & 116
09 1o 15
@ 8 2 & 14
M11 ?5 #31 1?;. 8y % 0% 40 13,
o 8 P “
7 05 U 3 u
3 g 067 % )
08 @ 35 402157 5%, 2
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10 12 o 0203
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Figure 1: Visualization of the first two principal components of the learned input embeddings at
different training stages of a transformer learning modular addition. We observe that generalization
coincides with the emergence of structure in the embeddings. See Section 4.2 for the training details.
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Grokking: Slingshot mechanism (Thilak et al., 2022)

train loss —— last layer norm Slingshot
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Slingshot mechanism generally come in tandem with grokking, i.e. grokking
almost exclusively happens at the onset of slingshots and is absent without it
(Thilak et al., 2022)
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Part VI - Why is it important to study such phenomena?
(Grokking, Double descent, emergent behavior, phase
transition, etc)

@ Understanding all these behaviours and how they affect the predictive
performance of neural networks (at scale or out-of-distribution) is
relevant to safety or may have potential safety consequences.

@ We need to be certain of a model’s safety before we scale it to a
capability level beyond which we cannot control it

@ Out-of-distribution generalization behaviour of deep learning models
is known to be challenging to control or foresee.
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